A combinatorial characterization of Hurewicz cofibrations between finite topological spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Functional Characterization of the Hurewicz Property

For a Tychonoff space $X$, we denote by $C_p(X)$ the space of all real-valued continuous functions on $X$ with the topology of pointwise convergence.  We study a functional characterization of the covering property of Hurewicz.

متن کامل

Finite Topological Spaces

(1) Let A be a set and f be a finite sequence of elements of 2A. Suppose that for every natural number i such that 1 i and i < len f holds πi f πi+1 f : Let i, j be natural numbers. If i j and 1 i and j len f ; then πi f π j f : (2) Let A be a set and f be a finite sequence of elements of 2A. Suppose that for every natural number i such that 1 i and i< len f holds πi f πi+1 f : Let i, j be natu...

متن کامل

The Euler Characteristic of Finite Topological Spaces

The purpose of this paper is to illustrate the relationship between the topological property of the Euler characteristic and a combinatorial object, the Möbius function, in the context of finite T0-spaces. To do this I first explain the fundamental connection between such spaces and finite partially ordered sets by proving some facts fundamental to the study of finite spaces. Then I define the ...

متن کامل

Persistent Homology of Finite Topological Spaces

We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite spaces. We prove an equivalence between persistent homology and normal homology in the context of finite topological spaces and introduce an extended pseudometric on finite topological spaces, using the results of Minian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2019

ISSN: 0166-8641

DOI: 10.1016/j.topol.2019.02.010